06 上下文构建
第三层:上下文构建
📌 核心文件:
nanobot/agent/context.py(~218 行)
概述
ContextBuilder 负责组装发送给 LLM 的完整上下文,包括系统提示、记忆、技能、对话历史等。这是 Agent “看到的世界”。
上下文的组成
一个完整的 LLM 请求包含:
messages = [
{
"role": "system",
"content": "系统提示(由 ContextBuilder 组装)"
},
{
"role": "user",
"content": "之前的用户消息1"
},
{
"role": "assistant",
"content": "之前的助手回复1"
},
# ... 更多历史 ...
{
"role": "user",
"content": "当前用户消息"
}
]
系统提示的结构
完整组成
# 1. 核心身份
- 当前时间
- 工作区路径
- 基本指令
# 2. Bootstrap 文件(如果存在)
## AGENTS.md
(Agent 行为规范)
## SOUL.md
(个性化设定)
## USER.md
(用户信息)
# 3. 记忆
从 MEMORY.md 和每日笔记加载
# 4. 技能
## 始终加载的技能(完整内容)
...
## 可用技能(仅摘要)
...
代码实现
class ContextBuilder:
BOOTSTRAP_FILES = ["AGENTS.md", "SOUL.md", "USER.md", "TOOLS.md", "IDENTITY.md"]
def __init__(self, workspace: Path):
self.workspace = workspace
self.memory = MemoryStore(workspace)
self.skills = SkillsLoader(workspace)
def build_system_prompt(self, skill_names: list[str] | None = None) -> str:
"""构建完整的系统提示"""
parts = []
# 1. 核心身份
parts.append(self._get_identity())
# 2. Bootstrap 文件
bootstrap = self._load_bootstrap_files()
if bootstrap:
parts.append(bootstrap)
# 3. 记忆
memory = self.memory.get_memory_context()
if memory:
parts.append(f"# Memory\n\n{memory}")
# 4. 技能
always_skills = self.skills.get_always_skills()
if always_skills:
always_content = self.skills.load_skills_for_context(always_skills)
parts.append(f"# Active Skills\n\n{always_content}")
skills_summary = self.skills.build_skills_summary()
if skills_summary:
parts.append(f"""# Skills
The following skills extend your capabilities. To use a skill, read its SKILL.md file.
{skills_summary}""")
return "\n\n---\n\n".join(parts)
核心身份
def _get_identity(self) -> str:
"""获取核心身份部分"""
from datetime import datetime
now = datetime.now().strftime("%Y-%m-%d %H:%M (%A)")
workspace_path = str(self.workspace.expanduser().resolve())
return f"""# nanobot 🐈
You are nanobot, a helpful AI assistant. You have access to tools that allow you to:
- Read, write, and edit files
- Execute shell commands
- Search the web and fetch web pages
- Send messages to users on chat channels
- Spawn subagents for complex background tasks
## Current Time
{now}
## Workspace
Your workspace is at: {workspace_path}
- Memory files: {workspace_path}/memory/MEMORY.md
- Daily notes: {workspace_path}/memory/YYYY-MM-DD.md
- Custom skills: {workspace_path}/skills//SKILL.md
IMPORTANT: When responding to direct questions or conversations, reply directly with your text response.
Only use the 'message' tool when you need to send a message to a specific chat channel.
Always be helpful, accurate, and concise."""
Bootstrap 文件
用户可以在工作区创建这些文件来定制 Agent:
def _load_bootstrap_files(self) -> str:
"""加载所有 Bootstrap 文件"""
parts = []
for filename in self.BOOTSTRAP_FILES:
file_path = self.workspace / filename
if file_path.exists():
content = file_path.read_text(encoding="utf-8")
parts.append(f"## {filename}\n\n{content}")
return "\n\n".join(parts) if parts else ""
示例 - SOUL.md(赋予 Agent 个性):
You are a friendly and patient assistant.
You prefer to explain concepts step by step.
When users make mistakes, you gently correct them.
消息构建
完整的消息列表
def build_messages(
self,
history: list[dict[str, Any]],
current_message: str,
skill_names: list[str] | None = None,
media: list[str] | None = None,
) -> list[dict[str, Any]]:
"""构建完整的消息列表"""
messages = []
# 系统提示
system_prompt = self.build_system_prompt(skill_names)
messages.append({"role": "system", "content": system_prompt})
# 历史消息
messages.extend(history)
# 当前消息(可能包含图片)
user_content = self._build_user_content(current_message, media)
messages.append({"role": "user", "content": user_content})
return messages
支持图片输入
def _build_user_content(self, text: str, media: list[str] | None):
"""构建用户消息(支持图片)"""
if not media:
return text
# 转换图片为 base64
images = []
for path in media:
p = Path(path)
mime, _ = mimetypes.guess_type(path)
if not p.is_file() or not mime or not mime.startswith("image/"):
continue
b64 = base64.b64encode(p.read_bytes()).decode()
images.append({
"type": "image_url",
"image_url": {"url": f"data:{mime};base64,{b64}"}
})
if not images:
return text
# OpenAI 格式:列表 [image, image, text]
return images + [{"type": "text", "text": text}]
生成的消息格式:
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "..."
}
},
{
"type": "text",
"text": "这张图片里有什么?"
}
]
}
工具调用的消息处理
添加助手消息(带工具调用)
def add_assistant_message(
self,
messages: list[dict[str, Any]],
content: str | None,
tool_calls: list[dict[str, Any]] | None = None
) -> list[dict[str, Any]]:
"""添加助手消息到消息列表"""
msg = {"role": "assistant", "content": content or ""}
if tool_calls:
msg["tool_calls"] = tool_calls
messages.append(msg)
return messages
添加工具结果
def add_tool_result(
self,
messages: list[dict[str, Any]],
tool_call_id: str,
tool_name: str,
result: str
) -> list[dict[str, Any]]:
"""添加工具执行结果"""
messages.append({
"role": "tool",
"tool_call_id": tool_call_id,
"name": tool_name,
"content": result
})
return messages
完整的对话示例
用户:“读取 config.json 文件并总结”
第一轮 LLM 调用
messages = [
{
"role": "system",
"content": "# nanobot 🐈\n\n..." # 完整系统提示
},
{
"role": "user",
"content": "读取 config.json 文件并总结"
}
]
LLM 返回工具调用
{
"role": "assistant",
"content": null,
"tool_calls": [{
"id": "call_123",
"type": "function",
"function": {
"name": "read_file",
"arguments": "{\"path\": \"config.json\"}"
}
}]
}
添加工具调用和结果
# 添加 LLM 的工具调用
messages = builder.add_assistant_message(
messages,
content=None,
tool_calls=[...]
)
# 执行工具
result = await tools.execute("read_file", {"path": "config.json"})
# 添加工具结果
messages = builder.add_tool_result(
messages,
tool_call_id="call_123",
tool_name="read_file",
result=result
)
现在 messages 变成:
[
{"role": "system", "content": "..."},
{"role": "user", "content": "读取 config.json 文件并总结"},
{
"role": "assistant",
"content": None,
"tool_calls": [...]
},
{
"role": "tool",
"tool_call_id": "call_123",
"name": "read_file",
"content": "文件内容:{...}"
}
]
第二轮 LLM 调用
LLM 看到工具结果后生成总结:
{
"role": "assistant",
"content": "这个配置文件包含了以下设置:..."
}
上下文长度管理
虽然当前实现没有限制历史长度,但可以轻松添加:
def build_messages(self, history, current_message, max_history=20):
"""限制历史消息数量"""
messages = []
# 系统提示
messages.append({"role": "system", "content": system_prompt})
# 只保留最近 N 条历史
recent_history = history[-max_history:] if len(history) > max_history else history
messages.extend(recent_history)
# 当前消息
messages.append({"role": "user", "content": current_message})
return messages
动态技能加载
ContextBuilder 支持两种技能加载方式:
1. 始终加载的技能
# skills/github/SKILL.md
---
name: github
always_load: true # 始终加载完整内容
---
# GitHub Skill
...
2. 按需加载的技能
# skills/weather/SKILL.md
---
name: weather
available: true # 仅显示在摘要中,Agent 需要时读取
---
# Weather Skill
...
LLM 会看到:
# Skills
The following skills are available. To use a skill, read its SKILL.md file.
- **weather** - Get weather information
Location: ~/.nanobot/skills/weather/SKILL.md
小结
- ✅ 模块化的系统提示构建
- ✅ Bootstrap 文件支持定制化
- ✅ 自动集成记忆和技能
- ✅ 支持图片输入(Vision 模型)
- ✅ 工具调用的消息管理
下一步:07-会话管理.md